Как решить дробь с корнем в знаменателе. Как в дроби избавиться от иррациональности в знаменателе. Преобразование выражения в знаменателе дроби

Выражения, преобразование выражений

Как освободиться от иррациональности в знаменателе? Способы, примеры, решения

В 8 классе на уроках алгебры в рамках темы преобразование иррациональных выражений заходит разговор про освобождение от иррациональности в знаменателе дроби . В этой статье мы разберем, что это за преобразование, рассмотрим, какие действия позволяют освободиться от иррациональности в знаменателе дроби, и приведем решения характерных примеров с детальными пояснениями.

Навигация по странице.

Что значит освободиться от иррациональности в знаменателе дроби?

Сначала нужно разобраться, что такое иррациональность в знаменателе и что значит освободиться от иррациональности в знаменателе дроби. В этом нам поможет информация из школьных учебников . Заслуживают внимания следующие моменты.

Когда запись дроби содержит в знаменателе знак корня (радикал), то говорят, что в знаменателе присутствует иррациональность . Вероятно, это связано с тем, что записанные при помощи знаков корней числа часто являются . В качестве примера приведем дроби , , , , очевидно, знаменатели каждой из них содержат знак корня, а значит и иррациональность. В старших классах неизбежна встреча с дробями, иррациональность в знаменатели которых вносят не только знаки квадратных корней, но и знаки кубических корней, корней четвертой степени и т.д. Вот примеры таких дробей: , .

Учитывая приведенную информацию и смысл слова «освободиться», очень естественно воспринимается следующее определение:

Определение.

Освобождение от иррациональности в знаменателе дроби – это преобразование, при котором дробь с иррациональностью в знаменателе заменяется тождественно равной дробью, не содержащей в знаменателе знаков корней.

Часто можно слышать, что говорят не освободиться, а избавиться от иррациональности в знаменателе дроби. Смысл при этом не меняется.

Например, если от дроби перейти к дроби , значение которой равно значению исходной дроби и знаменатель которой не содержит знака корня, то можно констатировать, что мы освободились от иррациональности в знаменателе дроби. Еще пример: замена дроби тождественно равной ей дробью есть освобождение от иррациональности в знаменателе дроби.

Итак, начальная информация получена. Остается узнать, что нужно делать, чтобы освободиться от иррациональности в знаменателе дроби.

Способы освобождения от иррациональности, примеры

Обычно для освобождения от иррациональности в знаменателе дроби используют два преобразования дроби : умножение числителя и знаменателя на отличное от нуля число или выражение и преобразование выражения в знаменателе. Ниже мы рассмотрим, как эти преобразования дробей используются в рамках основных способов, позволяющих избавиться от иррациональности в знаменателе дроби. Затронем следующие случаи.

В самых простых случаях достаточно преобразовать выражение в знаменателе. В качестве примера можно привести дробь, в знаменателе которой находится корень из девяти. В этом случае замена его значением 3 освобождает знаменатель от иррациональности.

В более сложных случаях приходится предварительно выполнять умножение числителя и знаменателя дроби на некоторое отличное от нуля число или выражение, что впоследствии позволяет преобразовать знаменатель дроби к виду, не содержащему знаков корней. Например, после умножения числителя и знаменателя дроби на , дробь принимает вид , а дальше выражение в знаменателе можно заменить выражением без знаков корней x+1 . Таким образом, после освобождения от иррациональности в знаменателе дробь принимает вид .

Если говорить про общий случай, то чтобы избавиться от иррациональности в знаменателе дроби, приходится прибегать к различным допустимым преобразованиям, иногда, довольно специфическим.

А теперь подробно.

Преобразование выражения в знаменателе дроби

Как уже было отмечено, один из способов избавления от иррациональности в знаменателе дроби состоит в преобразовании знаменателя. Рассмотрим решения примеров.

Пример.

Избавиться от иррациональности в знаменателе дроби .

Решение.

Раскрыв скобки в знаменателе, придем к выражению . Дальше позволяют перейти к дроби . Вычислив значения под знаками корней, имеем . Очевидно, в полученном выражении можно , что дает дробь , которая равна 1/16 . Так мы избавились от иррациональности в знаменателе.

Обычно решение записывают кратко без пояснения, так как выполняемые действия довольно просты:

Ответ:

.

Пример.

Решение.

Когда мы говорили про преобразование иррациональных выражений с использованием свойств корней , то отметили, что для любого выражения A при четных n (в нашем случае n=2 ) выражение можно заменить выражением |A| на всей ОДЗ переменных для исходного выражения. Поэтому, можно выполнить такое преобразование заданной дроби: , которое освобождает от иррациональности в знаменателе.

Ответ:

.

Умножение числителя и знаменателя на корень

Когда выражение в знаменателе дроби имеет вид , где выражение A не содержит знаков корней, то освободиться от иррациональности в знаменателе позволяет умножение числителя и знаменателя на . Это действие возможно, так как не обращается в нуль на ОДЗ переменных для исходного выражения. При этом в знаменателе получается выражение , которое легко преобразовать к виду без знаков корней: . Покажем применение этого подхода на примерах.

Пример.

Освободитесь от иррациональности в знаменателе дроби: а) , б) .

Решение.

а) Умножив числитель и знаменатель дроби на квадратный корень из трех, получим .

б) Чтобы избавиться от знака квадратного корня в знаменателе, умножим числитель и знаменатель дроби на , после чего проведем преобразования в знаменателе:

Ответ:

а) , б) .

В случае, когда в знаменателе находятся множители или , где m и n некоторые натуральные числа, числитель и знаменатель надо умножить на такой множитель, чтобы после этого выражение в знаменателе можно было преобразовать к виду или , где k – некоторое натуральное число, соответственно. Дальше легко перейти к дроби без иррациональности в знаменателе. Покажем применение описанного способа избавления от иррациональности в знаменателе на примерах.

Пример.

Освободиться от иррациональности в знаменателе дроби: а) , б) .

Решение.

а) Ближайшее натуральное число, превосходящее 3 и делящееся на 5 , есть 5 . Чтобы показатель шестерки стал равен пяти, выражение в знаменателе надо умножить на . Следовательно, освобождению от иррациональности в знаменателе дроби будет способствовать выражение , на которое надо умножить числитель и знаменатель:

б) Очевидно, что ближайшее натуральное число, которое превосходит 15 и при этом делится без остатка на 4 , это 16 . Чтобы получить показатель степени в знаменателе стал равен 16 , нужно умножить находящееся там выражение на . Таким образом, умножение числителя и знаменателя исходной дроби на (заметим, значение этого выражения не равно нулю при при каких действительных x ) позволит избавиться от иррациональности в знаменателе:

Ответ:

а) , б) .

Умножение на сопряженное выражение

Следующий способ освобождения от иррациональности в знаменателе дроби покрывает случаи, когда в знаменателе находятся выражения вида , , , , или . В этих случаях, чтобы освободиться от иррациональности в знаменателе дроби, надо числитель и знаменатель дроби умножить на так называемое сопряженное выражение .

Осталось узнать, какие выражения являются сопряженными для указанных выше. Для выражения сопряженным выражением является , а для выражения сопряженным является выражение . Аналогично, для выражения сопряженным является , а для выражения сопряженным является . И для выражения сопряженным является , а для выражения сопряженным является . Итак, выражение, сопряженное данному выражению, отличается от него знаком перед вторым слагаемым.

Давайте посмотрим, к чему приводит умножение выражения на сопряженное ему выражение. Для примера рассмотрим произведение . Его можно заменить разностью квадратов, то есть, , откуда дальше можно перейти к выражению a−b , которое не содержит знаков корней.

Теперь становится понятно, как умножение числителя и знаменателя дроби на выражение, сопряженное знаменателю, позволяет освободиться от иррациональности в знаменателе дроби. Рассмотрим решения характерных примеров.

Пример.

Представьте выражение в виде дроби, знаменатель которой не содержит радикала: а) , б) .

Решение.

а) Выражение, сопряженное знаменателю, это . Умножим на него числитель и знаменатель, что позволит нам освободиться от иррациональности в знаменателе дроби:

б) Для выражения сопряженным является . Умножая на него числитель и знаменатель, получаем

Можно было сначала вынести знак минус из знаменателя, а уже после этого умножать числитель и знаменатель на выражение, сопряженное знаменателю:

Ответ:

а) , б) .

Обратите внимание: при умножении числителя и знаменателя дроби на выражение с переменными, сопряженное знаменателю, нужно позаботиться, чтобы оно не обращалось в нуль ни при каком наборе значений переменных из ОДЗ для исходного выражения.

Пример.

Освободиться от иррациональности в знаменателе дроби .

Решение.

Для начала найдем область допустимых значений (ОДЗ) переменной x . Она определяется условиями x≥0 и , из которых заключаем, что ОДЗ есть множество x≥0 .

Выражение, сопряженное знаменателю, есть . Мы можем умножить на него числитель и знаменатель дроби при условии, что , которое на ОДЗ равносильно условию x≠16 . При этом имеем

А при x=16 имеем .

Таким образом, для всех значений переменной x из ОДЗ, кроме x=16 , , а при x=16 имеем .

Ответ:

Использование формул сумма кубов и разность кубов

Из предыдущего пункта мы узнали, что умножение числителя и знаменателя дроби на выражение, сопряженное знаменателю, проводится для того, чтобы в дальнейшем применить формулу разность квадратов и тем самым освободиться от иррациональности в знаменателе. В некоторых случаях для освобождения от иррациональности в знаменателе оказываются полезными и другие формулы сокращенного умножения . Например, формула разность кубов a 3 −b 3 =(a−b)·(a 2 +a·b+b 2) позволяет избавиться от иррациональности, когда в знаменателе дроби находятся выражения с кубическими корнями вида или , где A и B – некоторые числа или выражения. Для этого числитель и знаменатель дроби умножается на неполный квадрат суммы или на разность соответственно. Аналогично примеряется и формула сумма кубов a 3 +b 3 =(a+b)·(a 2 −a·b+b 2) .

Пример.

Освободитесь от иррациональности в знаменателе дроби: а) , б) .

Решение.

а) Несложно догадаться, что в данном случае освободиться от иррациональности в знаменателе позволяет умножение числителя и знаменателя на неполный квадрат суммы чисел и , так как в дальнейшем это позволит преобразовать выражение в знаменателе по формуле разность кубов:

б) Выражение в знаменателе дроби можно представить в виде , из которого хорошо видно, что это неполный квадрат разности чисел 2 и . Таким образом, если числитель и знаменатель дроби умножить на сумму , то знаменатель можно будет преобразовать по формуле сумма кубов, что позволит освободиться от иррациональности в знаменателе дроби. Это возможно сделать при условии , которое равносильно условию и дальше x≠−8 :

А при подстановке x=−8 в исходную дробь имеем .

Таким образом, для всех x из ОДЗ для исходной дроби (в данном случае это множество R ), кроме x=−8 , имеем , а при x=8 имеем .

Ответ:

Использование различных способов

В примерах посложнее обычно не получается в одно действие освободиться от иррациональности в знаменателе, а приходится последовательно применять метод за методом, в том числе и из разобранных выше. Иногда могут потребоваться и какие-нибудь нестандартные приемы решения. Довольно интересные задания по обсуждаемой теме можно найти в учебнике под авторством Колягина Ю. Н. Список литературы.

  1. Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  2. Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  3. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М. : Просвещение, 2010.- 368 с. : ил.- ISBN 978-5-09-022771-1.

Преобразование выражений, содержащих арифметические квадратные корни

Цель урока: создание условий для формирования умений, упрощать выражения, содержащие арифметические квадратные корни в ходе работы в группах сменного состава.

Задачи урока: проверить теоретическую подготовку учащихся, умение извлекать квадратный корень из числа, формировать навыки правильного воспроизведения своих знаний и умений, развивать вычислительные навыки, воспитывать умение работать в парах и ответственности за общее дело.

Ход урока.

I . Организационный момент. « ТАБЛИЦА ГОТОВНОСТИ»

Фиксация уровня готовности к началу занятия.

25 карточек красного цвета (5 баллов), желтого цвета (4 балла), синего

цвета (3 балла).

Таблица готовности

5 баллов (хочу знать, делать, решать)

4 балла (я готов к работе)

3 балла (я не очень хорошо себя чувствую, я не понимаю материал, мне нужна помощь)

II . Индивидуальная работа по карточкам

Карточка 1

Вынести множитель из-под знака корня:

Карточка 2

Внести множитель под знак корня:

Карточка 3

Упростить:
а)
б)
в)

(Проверка после проверки домашнего задания)

III . Проверка домашнего задания.

№166, 167 устно фронтально

(самооценивание с помощью сигнальных карточек: зелёный - всё верно, красный – есть ошибка)

IV . Изучение нового материала. Работа в группах сменного состава.

Самостоятельно изучить материал, чтобы потом суметь объяснить его членам группы. Класс делится на 6 групп по 4 человека.

1, 2 и 3 группы – учащиеся со средними способностями

Как избавиться от иррациональности в знаменателе дроби? Рассмотрим общий случай и конкретные примеры.

Если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей, чтобы избавиться от иррациональности в знаменателе и числитель, и знаменатель дроби умножаем на квадратный корень из этого числа или выражения:

Примеры.

1) ;

2) .

4, 5 и 6 группы – учащиеся со способностями выше средних.

Если знаменатель дроби - сумма либо разность двух выражений, содержащих квадратный корень, чтобы избавиться от иррациональности в знаменателе умножаем и числитель, и знаменатель на сопряженный радикал:

Примеры. Освободиться от иррациональности в знаменателе дроби:

Работа в новых группах (4 группы по 6 человек, от каждой группы по 1 человеку).

Объяснение изученного материала членам новой группы. (взаимооценивание – прокомментировать объяснение материала учеником)

V . Проверка усвоения теоретического материала. На вопросы отвечают учащиеся, не объясняющие данную часть теоретического материала.

1) Как избавиться от иррациональности в знаменателе дроби, если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей?

2) Как избавиться от иррациональности в знаменателе дроби, если знаменатель дроби - сумма либо разность двух выражений, содержащих квадратный корень?

3) как избавиться от иррациональности в знаменателе дроби

4) Как избавиться от иррациональности в знаменателе дроби

VI . Закрепление изученного материала. Проверочная самостоятельная работа.

№81 («Алгебра» 8 класс, А.Абылкасымова, И.Бекбоев, А.Абдиев, З,Жумагулова)

№170 (1,2,3,5,6) («Алгебра» 8 класс, А.Шыныбеков)

Критерии оценивания:

Уровень А – № 81 примеры 1-5 отметка «3»

Уровень В – № 81 примеры 6-8 и №170 примеры 5,6 отметка «4»

Уровень С – № 170 примеры 1-6 отметка «5»

(самооценивание, проверка по образцу в флипчарте)

VII . Домашнее задание.

№ 218

VIII . Рефлексия. « Телеграмма»

Каждому предлагается заполнить бланк телеграммы, получив при этом следующую инструкцию: «Что вы думаете о прошедшем занятии? Что было для вас важным? Чему вы научились? Что вам понравилось? Что осталось неясным? В каком направлении нам стоит продвигаться дальше? Напишите мне, пожалуйста, об этом короткое послание –телеграмму из 11 слов. Я хочу узнать ваше мнение для того, чтобы учитывать его в дальнейшей работе».

Итог урока.

Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Ответ: х = 1/3

Решим уравнение посложнее:

Здесь также присутствует ОДЗ: х -2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Запишем это же уравнение, но несколько по-другому

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Ответ: х = 2.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.

При преобразовании дробного алгебраического выражения, в знаменателе которого записано иррациональное выражение, обычно стремятся представить дробь так, чтобы ее знаменатель был рациональным. Если A,B,C,D,... - некоторые алгебраические выражения, то можно указать правила, с помощью которых можно освободиться от знаков радикала в знаменателе выражений вида

Во всех этих случаях освобождение от иррациональности производится умножением числителя и знаменателя дроби на множитель, выбранный так, чтобы его произведение на знаменатель дроби было рациональным.

1) Для освобождения от иррациональности в знаменателе дроби вида . В умножаем числитель и знаменатель на

Пример 1. .

2) В случае дробей вида . Умножаем числитель и знаменатель на иррациональный множитель

соответственно, т. е. на сопряженное иррациональное выражение.

Смысл последнего действия состоит в том, что в знаменателе произведение суммы на разность преобразуется в разность квадратов, которая уже будет рациональным выражением.

Пример 2. Освободиться от иррациональности в знаменателе выражения:

Решение, а) Умножаем числитель и знаменатель дроби на выражение . Получаем (при условии, что )

3) В случае выражений типа

знаменатель рассматривается как сумма (разность) и умножается на неполный квадрат разности (суммы), чтобы получить сумму (разность) кубов ((20.11), (20.12)). На тот же множитель умножается и числитель.

Пример 3. Освободиться от иррациональности в знаменателе выражений:

Решение, а) Рассматривая знаменатель данной дроби как сумму чисел и 1, умножим числитель и знаменатель на неполный квадрат разности этих чисел:

или окончательно:

В некоторых случаях требуется выполнить преобразование противоположного характера: освободить дробь от иррациональности в числителе. Оно проводится совершенно аналогично.

Пример 4. Освободиться от иррациональности в числителе дроби .

Рассмотрим задачу из алгебры многочленов.

Задача 4.1

Пусть а является корнем многочлена х 3 + 6х - 3. Нужно освободиться от алгебраической иррациональности в знаменателе дроби

Т.е. представить дробь в виде многочлена от а с рацио-

нальными коэффициентами.

Решение. Знаменатель дроби есть значение от а многочлена fix) =х 2 + 5, а минимальным многочленом алгебраического элемента а является ф(х) =х 3 + 6х- 3, поскольку этот многочлен неприводим над полем Q (по критерию Эйзенштейна при простом р = 3). Найдем НОДОс 3 + - 3, х 2 + 5) с помощью алгоритма Евклида:

Обобщим ситуацию и рассмотрим общую задачу.

Задача об освобождении от алгебраической иррациональности в знаменателе дроби

Пусть а - алгебраическая иррациональность над полем Р с ми-

, . „ а к а к +a k _,a k ~ l -f-. + aia + Oo

нимальным многочленом фОО и В = - - 1

Ъ т а т + bro-ioc" 1 - 1 +... + bja + b 0

где коэффициенты многочленов в числителе и знаменателе дроби принадлежат полю Р. Освободиться от алгебраической иррациональности в знаменателе дроби, т.е. представить (3 в виде

где коэффициенты принадлежат полю Р.

Решение. Обозначим/)*) = b nl x" + b m _ 1 x nl_1 +... + b } x + b 0 и у =/(а). Поскольку у ^ 0, то по свойству минимального многочлена НОД(/(х), ф(х)) = 1. Используя алгоритм Евклида, находим многочлены u(x) и v(x), такие что f(x) и (х) + ф(х)у(х) = 1. Отсюда Да) и (а) + ф(а)у(а) = 1, а так как ф(а) = 0, тоДа)и(а) = 1. Следовательно, умножая числитель и знаменатель данной дроби на ц(а), в знаменателе получим единицу, и задача решена.

Заметим, что общий прием освобождения от алгебраической иррациональности в знаменателе дроби в случае комплексных а + Ы

чисел-приводит к известной процедуре умножения числи-

теля и знаменателя на число, сопряженное знаменателю.

Исторический экскурс

Впервые существование чисел, трансцендентных над полем Q, обнаружил Ж. Лиувилль (1809-1882) в работах 1844 и 1851 гг. Одним из трансцендентных чисел Лиувилля является число

Ш. Эрмит (1822-

а= У--. Вдесятичнойзаписиа = 0Д100010..

кл 10*

1901) доказал трансцендентность числа е в 1873 г., а К. Ф. Линде- ман (1852-1939) доказал в 1882 г. трансцендентность числа п. Эти результаты были получены очень не просто. В то же время совсем просто Г. Кантор (1845-1918) доказал, что трансцендентных чисел «значительно больше», чем алгебраических: трансцендентных чисел «столько же», сколько всех действительных чисел, в то время как алгебраических чисел «столько же», сколько всех натуральных чисел. Точнее, множество алгебраических чисел счетно, а множество трансцендентных чисел несчетно. Доказательство этого факта, устанавливая существование трансцендентных чисел, не дает рецепта получения ни одного из них. Такого рода теоремы существования чрезвычайно важны в математике уже тем, что вселяют веру в успех поиска объекта, существование которого доказано. Вместе с тем существует направление в математике, представители которого не признают чистых теорем существования, называя их неконструктивными. Наиболее яркими из этих представителей являются Л. Кронекер и Я. Брауэр.

В 1900 г. на Всемирном конгрессе математиков в Париже немецкий математик Д. Гильберт (1862-1943) сформулировал следующую проблему 22: Какова природа числа аР, где а и (3 - алгебраические числа, а ^ 0, а ^ 1 и степень алгебраического числа (3 не меньше 2? А. О. Гельфонд (1906-1968) доказал, что такие числа трансцендентны. Отсюда следует, в частности, что числа 2^, З г являются трансцендентными.