Возможна ли сверхсветовая скорость. Сверхсветовые скорости. Скорость тренировочного чтения должна в три раза превышать скорость обычного чтения

В этой метафоре вагон представляет собой все, что мы можем увидеть в окружающем нас мире - дом, кота Ваську, звезды на небе и т.п. «Следующая станция - Завтра».

Если вы будете сидеть неподвижно, а кот Васька безмятежно спать свои положенные в сутки часы, вы не почувствуете движения. Но завтра обязательно придет.

Вот что значит двигаться в направлении будущего. Только время покажет, что правда: движение или стоянка.

Пока вам должно было довольно просто все это представлять. Возможно, сложно думать о времени как о направлении и уж тем более о себе - как о проходящем сквозь время объекте. Но вы поймете. Теперь включите воображение.

Представьте, что когда вы едете в своем автомобиле, случается что-то страшное: отказывают тормоза. По странному совпадению в тот же момент заклинивает газ и коробку передач. Вы не можете ни ускориться, ни остановиться. Единственное, что у вас есть - рулевое колесо. Вы можете изменить направление движения, но не его скорость.

Конечно, первое, что вы сделаете, это попытаетесь въехать в мягкий куст и как-нибудь аккуратно остановить автомобиль. Но давайте пока не будем пользоваться таким приемом. Просто сосредоточимся на особенностях вашего неисправного автомобиля: вы можете изменить направление, но не скорость.

Вот так мы движемся сквозь Вселенную. У вас есть руль, но нет педали. Сидя и читая эту статью, вы катитесь в светлое будущее на максимальной скорости. И когда вы встаете, чтобы сделать себе чайку, вы изменяете направление движения в пространстве-времени, но не его скорость. Если вы будете очень быстро двигаться по пространству, время будет течь немного медленнее.

Это легко представить, нарисовав пару осей на бумаге. Ось, которая будет идти вверх и вниз - это ось времени, вверх - значит в будущее. Горизонтальная ось представляет пространство. Мы можем нарисовать только одно измерение пространства, поскольку лист бумаги двухмерен, но давайте просто представим, что это понятие относится ко всем трем измерениям пространства.

Нарисуйте стрелку с начала оси координат, где они сходятся, и направьте ее вверх вдоль вертикальной оси. Неважно, насколько длинной она будет, просто имейте в виду, что у нее будет только одна длина. Эта стрелка, которая сейчас направлена в будущее, представляет собой величину, которую физики называют «четыре-скоростью». Это скорость вашего передвижения по пространству-времени. Прямо сейчас вы находитесь в неподвижном состоянии, поэтому стрелка направлена только в будущее.

Если вы хотите двигаться сквозь пространство - направо по оси координат - вам нужно изменить вашу четыре-скорость и включить горизонтальный компонент. Получается, вам нужно повернуть стрелку. Но как только вы это сделаете, вы заметите, что стрелка уже не так уверенно указывает наверх, в будущее, как до этого. Теперь вы движетесь сквозь пространство, но вам пришлось пожертвовать движением в будущем, поскольку стрелка четыре-скорости может только вращаться, но никогда не растягиваться или сжиматься.

Отсюда начинается знаменитый эффект «замедления времени», о котором говорят все, хоть немного посвященные в специальную теорию относительности. Если вы движетесь в пространстве, вы не движетесь во времени так быстро, как могли бы, если бы сидели на месте. Ваши часы будут отсчитывать время медленнее, нежели часы человека, который не движется.

А теперь мы подходим к разрешению вопроса, почему фраза «быстрее света» не имеет смысла в нашей вселенной. Смотрите, что происходит, если вы хотите двигаться по пространству как можно быстрее. Вы поворачиваете стрелку четыре-скорости до упора, пока она не будет указывать вдоль горизонтальной оси. Мы помним, что стрелка не может растягиваться. Она может только вращаться. Итак, вы увеличили скорость в пространстве насколько это возможно. Но стало невозможным двигаться еще быстрее. Стрелку некуда повернуть, иначе она станет «прямее прямого» или «горизонтальнее горизонтального». Вот к этому понятию и приравнивайте «быстрее света». Это просто невозможно, как накормить тремя рыбками и семью хлебами огромный народ.

Вот почему в нашей вселенной ничто не может двигаться быстрее света. Потому что фраза «быстрее света» в нашей вселенной эквивалентна фразе «прямее прямого» или «горизонтальнее горизонтального».

Да, у вас осталось несколько вопросов. Почему векторы четыре-скорости могут лишь вращаться, но не растягиваться? На этот вопрос есть ответ, но он связан с инвариантностью скорости света, и мы оставим его на потом. И если вы просто поверите в это, то будете чуть менее информированы по этому вопросу, чем самые блестящие физики, когда-либо существовавшие на нашей планете.

Скептики могут усомниться, почему мы используем упрощенную модель геометрии пространства, говоря об эвклидовых вращениях и кругах. В реальном мире геометрия пространства-времени подчиняется геометрии Минковского, а повороты являются гиперболическими. Но простой вариант объяснения имеет право на жизнь.

Как и простое объяснение тому, .

Астрофизикам удалось зафиксировать пример преодоления барьера сверхсветовой скорости, в форме импульса, излучаемого пульсаром.

Теоретические выкладки и лабораторные опыты позволили предположить, что объект может преодолеть , не нарушая при этом принципа теории относительности. Теперь же астрофизикам удалось отметить реальный пример этого явления, изучая распространение радиоимпульсов от пульсаров.

Сверхсветовая скорость может быть достигнута при условии аномальной дисперсии, то есть при условии, что показатель преломления среды будет возрастать во время прохождения сквозь нее световой волны. Предположим, что сквозь пространство проходит единичный импульс, состоящий из световых волн разной длины. В этом случае общая скорость импульса может быть больше, чем скорость каждой отдельной волны, хотя энергии импульса продолжает перемещаться со скоростью света. То есть принципы теории относительности нарушены не будут.

Эксперименты проводились группой ученых во главе с Фредериком Дженетом в обсерватории, расположенной в Пуэрто-Рико. Ученые в течение трех дней проводили наблюдение за излучением пульсара PSR B1937+21, расположенного на расстоянии в 10 000 световых лет от Земли. Измерения проводились на частоте 1420,4 МГц при ширине полосы в 1,5 МГц. Наблюдения показали, что центральные импульсы, прибывали раньше расчетного времени, то есть перемещались со скоростью, превышающую скорость света.

Пульсаром называют нейтронную звезду, которая вращается с огромной скоростью и периодически излучает импульсы энергии. На скорость прохождения импульсов в пространстве может оказать влияние несколько разных факторов. К примеру, попав в магнитное поле, импульсы могут поменять плоскость поляризации, при столкновении со свободными электронами импульс распадется, а «встреча» с нейтральным водородом обернется поглощением импульса.

Дженет считает, что на скорость перемещения импульсов немалое влияние оказывает и аномальная дисперсия. По версии ученых импульсы проходят через водородное облако с резонансной частотой 1420,4 МГц. Под влиянием дисперсии групповая скорость излучения изменилась, дойдя до сверхсветовых значений. И импульсы, имеющие частоты близкие к резонансным, прибыли к Земле быстрее остальных. Это напоминает изменение скорости когда вы делаете пополнение счета Билайн и любого другого оператора.

По версии ученых, достижение сверхсветовых скоростей стало возможным при «взаимодействии масштабов времени среды и самого импульса». Такое явление уже удавалось наблюдать в условиях лабораторий, но вот в естественной среде подобное наблюдение было сделано впервые. Открытие позволит ученым-астрономам изучить состав межзвездного вещества, в частности облаков из не ионизированного водорода, расположенных в нашей галактике.


Научная фантастика или научный факт?

Наверное, всем – даже людям, далеким от физики, – известно, что предельно возможной скоростью движения материальных объектов или распространения любых сигналов является скорость света в вакууме .

Она обозначается буквой c и составляет почти 300 тысяч километров в секунду; точная величина с = 299 792 458 м/с.

Скорость света в вакууме – одна из фундаментальных физических констант.

Невозможность достижения скоростей, превышающих с, вытекает из специальной теории относительности (СТО) Эйнштейна.

Если бы удалось доказать, что возможна передача сигналов со сверхсветовой скоростью, теория относительности пала бы. Пока что этого не случилось, несмотря на многочисленные попытки опровергнуть запрет на существование скоростей, больших с.

Однако в экспериментальных исследованиях последнего времени обнаружились некоторые весьма интересные явления, свидетельствующие о том, что при специально созданных условиях можно наблюдать сверхсветовые скорости и при этом принципы теории относительности не нарушаются.

Для начала напомним основные аспекты, относящиеся к проблеме скорости света. Прежде всего: почему нельзя (при обычных условиях) превысить световой предел?

Потому, что тогда нарушается фундаментальный закон нашего мира – закон причинности, в соответствии с которым следствие не может опережать причину.

Никто никогда не наблюдал, чтобы, например, сначала замертво упал медведь, а потом выстрелил охотник. При скоростях же, превышающих с, последовательность событий становится обратной, лента времени отматывается назад. В этом легко убедиться из следующего простого рассуждения.

Предположим, что мы находимся на неком космическом чудо-корабле, движущемся быстрее света. Тогда мы постепенно догоняли бы свет, испущенный источником во все более и более ранние моменты времени.

Сначала мы догнали бы фотоны, испущенные, скажем, вчера, затем – испущенные позавчера, потом – неделю, месяц, год назад и так далее. Если бы источником света было зеркало, отражающее жизнь, то мы сначала увидели бы события вчерашнего дня, затем позавчерашнего и так далее. Мы могли бы увидеть, скажем, старика, который постепенно превращается в человека средних лет, затем в молодого, в юношу, в ребенка...

То есть время повернуло бы вспять, мы двигались бы из настоящего в прошлое. Причины и следствия при этом поменялись бы местами.

Хотя в этом рассуждении полностью игнорируются технические детали процесса наблюдения за светом, с принципиальной точки зрения оно наглядно демонстрирует, что движение со сверхсветовой скоростью приводит к невозможной в нашем мире ситуации.

Однако природа поставила еще более жесткие условия: недостижимо движение не только со сверхсветовой скоростью, но и со скоростью, равной скорости света, – к ней можно только приближаться.

Из теории относительности следует, что при увеличении скорости движения возникают три обстоятельства: возрастает масса движущегося объекта, уменьшается его размер в направлении движения и замедляется течение времени на этом объекте (с точки зрения внешнего "покоящегося" наблюдателя).

При обычных скоростях эти изменения ничтожно малы, но по мере приближения к скорости света они становятся все ощутимее, а в пределе – при скорости, равной с, – масса становится бесконечно большой, объект полностью теряет размер в направлении движения и время на нем останавливается.

Поэтому никакое материальное тело не может достичь скорости света. Такой скоростью обладает только сам свет! (А также "всепроникающая" частица – нейтрино, которая, как и фотон, не может двигаться со скоростью, меньшей с.)

Теперь о скорости передачи сигнала . Здесь уместно воспользоваться представлением света в виде электромагнитных волн.

Что такое сигнал? Это некая информация, подлежащая передаче.

Идеальная электромагнитная волна – это бесконечная синусоида строго одной частоты, и она не может нести никакой информации, ибо каждый период такой синусоиды в точности повторяет предыдущий.

Скорость перемещения фазы cинусоидальной волны – так называемая фазовая скорость – может в среде при определенных условиях превышать скорость света в вакууме.

Здесь ограничения отсутствуют, так как фазовая скорость не является скоростью сигнала – его еще нет . Чтобы создать сигнал, надо сделать какую-то "отметку" на волне. Такой отметкой может быть, например, изменение любого из параметров волны – амплитуды, частоты или начальной фазы. Но как только отметка сделана, волна теряет синусоидальность. Она становится модулированной, состоящей из набора простых синусоидальных волн с различными амплитудами, частотами и начальными фазами – группы волн.

Скорость перемещения отметки в модулированной волне и является скоростью сигнала. При распространении в среде эта скорость обычно совпадает с групповой скоростью, характеризующей распространение вышеупомянутой группы волн как целого (см. "Наука и жизнь" № 2, 2000 г.). При обычных условиях групповая скорость, а следовательно, и скорость сигнала меньше скорости света в вакууме. Здесь не случайно употреблено выражение "при обычных условиях", ибо в некоторых случаях и групповая скорость может превышать с или вообще терять смысл, но тогда она не относится к распространению сигнала. В СТО устанавливается, что невозможна передача сигнала со скоростью, большей с.

Почему это так? Потому, что препятствием для передачи любого сигнала со скоростью больше с служит все тот же закон причинности .

Представим себе такую ситуацию. В некоторой точке А световая вспышка (событие 1) включает устройство, посылающее некий радиосигнал, а в удаленной точке В под действием этого радиосигнала происходит взрыв (событие 2). Понятно, что событие 1 (вспышка) – причина, а событие 2 (взрыв) – следствие, наступающее позже причины. Но если бы радиосигнал распространялся со сверхсветовой скоростью, наблюдатель вблизи точки В увидел бы сначала взрыв, а уже потом – дошедшую до него со скоростью с световую вспышку, причину взрыва. Другими словами, для этого наблюдателя событие 2 совершилось бы раньше, чем событие 1, то есть следствие опередило бы причину.

Уместно подчеркнуть, что "сверхсветовой запрет" теории относительности накладывается только на движение материальных тел и передачу сигналов .

Во многих ситуациях возможно движение с любой скоростью, но это будет движение не материальных объектов и не сигналов. Например, если взять фонарик (или, скажем, лазер, дающий узкий луч) и быстро описать им в воздухе дугу, то линейная скорость светового зайчика будет увеличиваться с расстоянием и на достаточно большом удалении превысит с. Световое пятно переместится между точками А и В со сверхсветовой скоростью, но это не будет передачей сигнала из А в В, так как такой световой зайчик не несет никакой информации о точке А.

Казалось бы, вопрос о сверхсветовых скоростях решен. Но в 60-х годах двадцатого столетия физиками-теоретиками была выдвинута гипотеза существования сверхсветовых частиц, названных тахионами. Это очень странные частицы: теоретически они возможны, но во избежание противоречий с теорией относительности им пришлось приписать мнимую массу покоя. Физически мнимая масса не существует, это чисто математическая абстракция. Однако это не вызвало особой тревоги, поскольку тахионы не могут находиться в покое – они существуют (если существуют!) только при скоростях, превышающих скорость света в вакууме, а в этом случае масса тахиона оказывается вещественной. Здесь есть некоторая аналогия с фотонами: у фотона масса покоя равна нулю, но это просто означает, что фотон не может находиться в покое – свет нельзя остановить.

Наиболее сложным оказалось, как и следовало ожидать, примирить тахионную гипотезу с законом причинности. Попытки, предпринимавшиеся в этом направлении, хотя и были достаточно остроумными, не привели к явному успеху. Экспериментально зарегистрировать тахионы также никому не удалось. В итоге интерес к тахионам как к сверхсветовым элементарным частицам постепенно сошел на нет.

Работы последних лет показывают, что при определенных условиях сверхсветовая скорость действительно может иметь место. Но что именно движется со сверхсветовой скоростью? Теория относительности, как уже упоминалось, запрещает такую скорость для материальных тел и для сигналов, несущих информацию. Тем не менее некоторые исследователи весьма настойчиво пытаются продемонстрировать преодоление светового барьера именно для сигналов.

Причина этого кроется в том, что в специальной теории относительности нет строгого математического обоснования (базирующегося, скажем, на уравнениях Максвелла для электромагнитного поля) невозможности передачи сигналов со скоростью больше с. Такая невозможность в СТО устанавливается, можно сказать, чисто арифметически, исходя из эйнштейновской формулы сложения скоростей, но фундаментальным образом это подтверждается принципом причинности.

Сам Эйнштейн, рассматривая вопрос о сверхсветовой передаче сигналов, писал, что в этом случае "...мы вынуждены считать возможным механизм передачи сигнала, при использовании которого достигаемое действие предшествует причине. Но, хотя этот результат с чисто логической точки зрения и не содержит в себе, по-моему, никаких противоречий, он все же настолько противоречит характеру всего нашего опыта, что невозможность предположения V > с представляется в достаточной степени доказанной".

Принцип причинности – вот тот краеугольный камень, который лежит в основе невозможности сверхсветовой передачи сигналов.

И об этот камень, по-видимому, будут спотыкаться все без исключения поиски сверхсветовых сигналов, как бы экспериментаторам не хотелось такие сигналы обнаружить, ибо такова природа нашего мира.

Приведено с сокращениями –

Тема «Двигателя, позволяющего летать со сверхсветовой скоростью», «Путешествия в многомерном пространстве» и всего, что имеет отношение к теме полета со скоростью, превышающей световую, пока что не выходит за рамки домыслов, хотя в каких-то аспектах и соприкасается с миром науки.

Сегодня мы находимся на стадии, когда знаем, что мы кое-что знаем, а чего-то не знаем, но уж точно не знаем, можно ли перемещаться со скоростью, превышающей скорость света.

Плохая новость заключается в том, что основы современных научных знаний, накопленных к данному моменту, свидетельствуют о том, что движение со скоростью, превышающей световую, невозможно. Это артефакт Специальной теории относительности Эйнштейна.


Да, существуют иные концепции - сверхсветовых частиц, кротовых нор (туннели в пространстве - прим. перев.), инфляционной вселенной, деформации пространства и времени, квантовых парадоксов... Все эти идеи обсуждаются в серьезной научной литературе, но пока еще рано говорить об их реальности.

Один из вопросов, появляющихся в связи с движением со сверхсветовой скоростью, это временные парадоксы: нарушение причинно-следственных связей и что подразумевается под путешествием во времени. Как будто темы полета со сверхсветовой скоростью мало, так еще и реальна ли разработка сценария, при котором сверхсветовая скорость даст возможность путешествия во времени. Путешествие во времени считается гораздо более невозможным, чем световой полет.

В чем основное отличие?

Едва преодолев звуковой барьер, люди задались вопросом: «А почему бы нам теперь еще и не преодолеть световой барьер, так ли уж сильно это отличается?» Слишком рано говорить о преодолении светового барьера, но кое-что уже известно наверняка - это совершенно иная проблема, нежели преодоление звукового барьера. Звуковой барьер был преодолен объектом, сделанным из материала, а не звука.

Атомы и молекулы материала соединены электромагнитными полями, из чего состоит и свет. В случае с преодолением барьера скорости света, предмет, пытающийся преодолеть этот барьер, состоит из того же, что и сам барьер. Как объект может двигаться быстрее того, что связывает его атомы? Как мы уже отмечали, это уже совсем другая проблема, нежели преодоление звукового барьера.

Специальная теория относительности

Можно очень кратко изложить «Специальную теорию относительности». На самом деле она очень проста по своей конструкции… Начните с двух простых правил.

Правило №1: пройденное вами расстояние (d) зависит от скорости вашего движения (v) и времени движения (t). Если вы едете со скоростью 55 миль в час, вы проедете за час 55 миль. Просто.

Правило №2: Это потрясающая вещь - как бы быстро вы не двигались, вы постоянно будете отмечать, что скорость света остается неизменной.

Соедините их вместе и сравните, что «видит» один путешественник по сравнению с тем, кто движется с другой скоростью - вот тут и появляются проблемы. Давайте попробуем иную картину. Закройте глаза. Представьте, что из всех органов чувств у вас задействован лишь слух. Вы воспринимаете только звуки. Вы определяет предметы только по тому, какой звук они издают.

Итак, если проехал паровоз, его гудок хоть как-то изменился? Мы знаем, что он звучит на определенной ноте, но из-за движения поезда она меняется вследствие действия так называемого эффекта Доплера. То же самое происходит и со светом. Все вокруг себя мы знаем благодаря присутствию света или, если обобщить, электромагнетизму. То, что мы видим, чувствуем (молекулы воздуха отскакивают от нашей кожи), слышим (молекулы ударяются между собой под давлением волн), даже течение времени - все это управляется электромагнитными силами.

Так что если мы начинаем двигаться на скоростях, приближающихся к скорости, через которую мы получаем всю информацию, наша информация искажается. В общем, это вот так просто. Понимания этого достаточно, если с этим пытаешься что-то делать. Но это уже другой вопрос.

Барьер скорости света

Барьер скорости света является одним из следствий Специальной теории относительности. На это можно взглянуть иначе. Чтобы двигаться быстрее, нужно добавить энергии. Но когда вы начинаете приближаться к скорости света, необходимый для движения объем энергии взлетает до бесконечности. Для перемещения массы со скоростью света требуется бесконечная энергия. Оказывается, здесь вы сталкиваетесь с реальным барьером.


Можно ли обойти Специальную теорию относительности? Вероятно.

Проводятся ли какие-то исследования в этом направлении? Да, но в небольшом объеме.

В дополнение к индивидуальной теоретической работе таких физиков, как Мэт Виссер (Matt Visser), Майкл Моррис (Michael Morris), Мигель Алькубьерре (Miguel Alcubierre) и других существует качественно новая программа НАСА в области физики реактивного движения.

Оригинал публикации.

Очень важно примечание «в вакууме», о котором мы говорили в самом начале. Свет движется по оптоволокну не так быстро, как в вакууме. Проходя через любую известную нам среду, свет движется значительно медленнее, чем в «идеальных» условиях, о которых говорит константа. Воздух не особо мешает свету, но стекло - существенно. Показатель преломления для среды у света это значение скорости света в вакууме, деленное на скорость света в среде. Для стекла этот показатель равен 1,5, поэтому если вы поделите скорость света (300 000 км/с примерно) на 1,5, то получите 200 000 км/c - приблизительная скорость света, проходящего через стекло. Некоторое оптоволокно сделано из пластика, у которого еще больший показатель преломления света, а значит и скорость меньше.

Одной из причин уменьшения скорости является двойственная природа света. Он обладает признаками как частицы, так и волны. Да, свет состоит из фотонов, но они не двигаются по прямой линии, проходя через кабель. И поскольку фотоны сталкиваются с молекулами материала, они движутся в разных направлениях. Преломление света и поглощение среды, в конечном итоге, приводит к потере энергии и данных. Именно потому сигнал не может двигаться бесконечно, и его нужно постоянно усиливать для передачи на длинную дистанцию. Стоит отметить, что замедление света - это лишь малая толика плохих новостей. В оптоволоконный кабель иногда добавляются примеси, которые контролируют скорость света и позволяют транслировать сигнал эффективнее.

Оптоволоконный кабель, конечно, гораздо быстрее передает информацию, чем медный провод, и не так подвержен воздействию электромагнитных помех. Волокно позволяет достичь скорости передачи в несколько сотен Гб/с или даже Тб/с. Домашнее интернет-соединение не демонстрирует такой скорости хотя бы потому, что проводка везде разная. Даже если у вас стоит оптоволокно, возможно, на одном из участков передачи данных есть медный кусок. Но даже с таким оптоволокном информация будет идти к вам со скоростью 50-100 Мб/c, что получше, чем 1-6 Мб/с у DSL-линий. Скорость соединения зависит также от местоположения, провайдера и вашего тарифного плана.

Есть и другие вещи, которые вызывают задержки сигнала (так называемый delay - «дилэй»), когда вы пытаетесь зайти на страничку в Сети или играете в онлайн-игру. Ваш компьютер и сервер, который хранит данные, сообщаются, чтобы данные были синхронизированы и передавались эффективно, и именно это вызывает задержки. Также важна дистанция, которую проходят данные, а в некоторых местах могут быть «узкие проходы», которые задержат их еще больше. Система работает настолько быстро, насколько быстро работает самый медленный ее компонент.

Ученые работают над созданием системы передачи данных по воздуху. Представьте себе Wi-Fi-лампочки или Wi-Fi-напыление, о котором мы , или вообще лазерные лучи от здания к зданию. Но все равно свет может двигаться через воздух со скоростью, близкой к скорости света в вакууме, но не больше. Как обойти это ограничение?

Возможность сверхсветовой скорости передачи данных

Ученые из Национального института стандартов и технологий (NIST) утверждают, что смогли передать квантовую информацию со сверхсветовой скоростью, благодаря так называемому четырехволновому смешению, которое, по сути, является проявлением одной из форм интерференции в оптоволокне. Эксперимент заключается в передаче короткого 200-наносекундного импульса сквозь нагретый рубидиевый пар и одновременную передачу второго пучка лучей на другой частоте, который должен усилить первый импульс. Фотоны из обоих лучей взаимодействуют с паром и рождают третий луч. Как показывают результаты, третий луч движется быстрее скорости света в вакууме. Примерно на 50-90 наносекунд быстрее. Ученые утверждают, что скорость импульса можно калибровать путем изменения вводных параметров.

Другой вариант сверхсветовой скорости передачи - это квантовая телепортация , один из , который основан на запутанных парах: две частицы, запутанные друг с другом, будут обладать одними и теми же характеристиками, вне зависимости от того, как далеко вы разведете их. Также требуется третья частица, которая будет содержать данные, которые вам нужно передать. С помощью лазера можно телепортировать, в буквальном смысле, одну из частиц куда угодно. Это не похоже на передачу фотона, скорее на замену одного фотона копией оригинала. Этот фотон можно сравнить с третьей частицей на предмет нахождения соответствий или различий, а эта информация уже может быть использована для сравнения двух частиц. Похоже на моментальную передачу данных, но не совсем. Лазерный луч может двигаться только со скоростью света. Однако его можно использовать для передачи зашифрованных данных на спутник, а также для создания квантовых компьютеров, если мы-таки до них доберемся. Такая технология зашла куда дальше, чем любые другие попытки передать информацию быстрее скорости света. На сегодняшний день она работает только в ограниченных пределах, а ученые постоянно работают над увеличением дистанции телепорта.

Ответа на вопрос, может ли значимая информация двигаться быстрее, чем свет, пока нет. Сейчас мы можем переместить лишь несколько частиц, и это хорошо, поскольку в дальнейшем может привести нас к желанной цели. На практике, вам нужно передать организованные биты информации, которые хоть что-то означают и не повреждены, на другую машину, которая сможет их прочитать. В противном случае самая быстрая в мире передача данных не будет стоить и ломаного гроша. Но можете быть уверены, если ученые все же превысят порог скорости света, ваш Интернет заработает быстрее. Намного быстрее, чем начнутся межзвездные перелеты.