Живые организмы не способны усваивать механическую энергию. Преобразование энергии солнечного света и организмы использующие её. А в это время

Для тех, кто не интересуется животными, а ищет где бы купить подарок к Новому году подешевле промокод Групон обязательно придется очень кстати.

Некоторые организмы, если сравнивать их с другими, обладают рядом неоспоримых преимуществ, например, способностью выдерживать крайне высокие или низкие температуры. Таких выносливых живых существ в мире есть очень много. В статье ниже вы познакомитесь с самыми удивительными из них. Они, без преувеличения, способны выживать даже в экстремальных условиях.

1. Гималайские пауки-скакуны

Горные гуси, как известно, являются одними из самых высоко летающих птиц в мире. Они способны летать на высоте более 6 тысяч метров над землёй.

А знаете ли Вы, где находится высочайший населённый пункт на Земле? В Перу. Это город Ла-Ринконада, расположенный в Андах недалеко от границы с Боливией на высоте около 5100 метров над уровнем моря.

Между тем, рекорд самых высоко живущих существ на планете Земля достался Гималайским паукам-скакунам Эуофрис омнисуперстес (Euophrys omnisuperstes – «стоящие надо всем»), которые обитают в укромных уголках и трещинах на склонах горы Эверест. Альпинисты находили их даже на высоте 6700 метров. Эти крошечные пауки питаются насекомыми, которых заносит на горную вершину сильным ветром. Они являются единственными живыми существами, постоянно обитающими на такой огромной высоте, не считая, конечно, некоторые виды птиц. Известно также, что Гималайские пауки-скакуны способны выжить даже в условиях недостатка кислорода.

2. Гигантский кенгуровый прыгун

Когда нас просят назвать животное, которое способно обходиться без питьевой воды длительные периоды времени, первое, что приходит на ум – это верблюд. Однако в пустыне без воды он может продержаться не более 15 дней. И нет – верблюды не хранят запасы воды в своих горбах, как многие ошибочно полагают. Меж тем, на Земле всё же есть такие животные, которые живут в пустыне и способны прожить без единой капли воды в течение всей жизни!

Гигантские кенгуровые прыгуны являются родственниками бобров. Продолжительность их жизни составляет от трёх до пяти лет. Воду гигантские кенгуровые прыгуны получают вместе с пищей, а питаются они преимущественно семенами.

Гигантские кенгуровые прыгуны, как отмечают учёные, не потеют вовсе, поэтому они не теряют, а, наоборот, накапливают воду в организме. Найти их можно в Долине Смерти (штат Калифорния). Гигантские кенгуровые прыгуны в данный момент находятся под угрозой исчезновения.

3. Черви, устойчивые к высоким температурам

Поскольку вода проводит тепло от тела человека примерно в 25 раз более эффективно, чем воздух, то температура, равная 50 градусам Цельсия, в глубинах моря будет намного опаснее, нежели на суше. Именно поэтому под водой процветают бактерии, а не многоклеточные организмы, которые не выдерживают слишком высоких температур. Но есть и исключения…

Морские глубоководные кольчатые черви Паральвинелла сульфинкола (Paralvinella sulfincola), которые обитают рядом с гидротермальными источниками на дне Тихого океана, возможно, являются самыми теплолюбивыми живыми существами на планете. Результаты проведённого учёными эксперимента с нагреванием аквариума показали, что эти черви предпочитают селиться там, где температура достигает 45-55 градусов Цельсия.

4. Гренландская полярная акула

Гренландские полярные акулы являются одними из крупнейших живых существ на планете Земля, однако учёные практически ничего о них знают. Они плавают очень медленно, наравне с обычным пловцом-любителем. Тем не менее, увидеть гренландских полярных акул в океанских водах почти не представляется возможным, поскольку они, как правило, обитают на глубине, равной 1200 метрам.

Гренландские полярные акулы также считаются самыми холодолюбивыми существами в мире. Они предпочитают обитать в местах, где температура достигает 1-12 градусов Цельсия.

Гренландские полярные акулы живут в холодных водах, следовательно, им приходится экономить энергию; это объясняет тот факт, что плавают они весьма медленно – со скоростью не более двух километров в час. Гренландских полярных акул ещё называют «спящими акулами». В еде они не разборчивы: питаются всем, что удастся поймать.

По мнению некоторых учёных, продолжительность жизни Гренландских полярных акул может достигать 200 лет, однако пока это не было доказано.

5. Дьявольские черви

На протяжении нескольких десятилетий учёные думали, что только одноклеточные организмы способны выживать на очень больших глубинах. Считалось, что многоклеточные формы жизни там не могут обитать из-за недостатка кислорода, давления и высоких температур. Тем не менее, совсем недавно исследователи обнаружили на глубине нескольких тысяч метров от поверхности земли микроскопических червей.

Нематоды Halicephalobus mephisto, названные в честь демона из немецкого фольклора, были обнаружены Гаэтаном Боргони и Таллисом Онстоттом в 2011 году в пробах воды, взятой на глубине 3,5 километра в одной из пещер Южной Африки. Учёные выяснили, что они проявляют высокую стойкость в различных экстремальных условиях, как и те круглые черви, которые пережили катастрофу шаттла «Колумбия», произошедшую 1 февраля 2003 года. Обнаружение дьявольских червей может способствовать расширению области поиска жизни на Марсе и любой другой планете нашей Галактики.

6. Лягушки

Учёные заметили, что некоторые виды лягушек в буквальном смысле замерзают с наступлением зимы и, оттаивая весной, возвращаются к полноценной жизни. В Северной Америке насчитывается пять видов таких лягушек, наиболее распространённым из них является Rana sylvatica, или Лесная лягушка.

Лесные лягушки не умеют зарываться в землю, поэтому с наступлением холодов они просто прячутся под опавшие листья и замерзают, как и всё вокруг. Внутри организма у них срабатывает естественный «антифризовый» защитный механизм, и они, как компьютер, переходят в «спящий режим». Пережить зиму им во многом позволяют запасы глюкозы в печени. Но самым удивительным является то, что Лесные лягушки проявляют свою удивительную способность как в дикой природе, так и в лабораторных условиях.

7. Глубоководные бактерии

Все мы знаем, что глубочайшей точкой Мирового океана является Марианская впадина, которая находится на глубине более 11 тысяч метров. У её дна давление воды достигает 108,6 МПа, что примерно в 1072 раза больше нормального атмосферного давления на уровне Мирового океана. Несколько лет назад учёные при помощи камер высокого разрешения, помещённых в стеклянные сферы, обнаружили в Марианской впадине гигантских амёб. По мнению Джеймса Кэмерона, возглавлявшего экспедицию, в ней также процветают и другие формы жизни.

Изучив пробы воды со дна Марианской впадины, учёные обнаружили в ней огромное количество бактерий, которые, на удивление, активно размножались, несмотря на большую глубину и экстремальное давление.

8. Bdelloidea

Коловратки Bdelloidea – небольшие беспозвоночные животные, которые обычно встречаются в пресной воде.

У представителей коловраток Bdelloidea самцы отсутствуют, популяции представлены лишь партеногенетическими самками. Bdelloidea размножаются бесполым способом, что, по мнению учёных, негативно влияет на их ДНК. А какой самый лучший способ побороть эти вредные последствия? Ответ: съесть ДНК других форм жизни. Благодаря такому подходу, у Bdelloidea развилась удивительная способность выдерживать экстремальное обезвоживание. Более того, они могут выжить даже после получения смертельной для большинства живых организмов дозы радиации.

Учёные считают, что способность Bdelloidea к репарации ДНК была изначально дана им для выживания в условиях высоких температур.

9. Тараканы

Существует популярный миф о том, что после ядерной войны на Земле в живых останутся только тараканы. Эти насекомые способны неделями обходиться без еды и воды, однако ещё больше поражает тот факт, что они могут жить много дней спустя после того, как лишатся своей головы. Тараканы появились на Земле 300 миллионов лет назад, даже раньше, чем динозавры.

Ведущие «Разрушителей легенд» в одной из передач решили проверить тараканов на живучесть в ходе нескольких экспериментов. Сначала они подвергли определённое количество насекомых излучению в 1000 рад – дозе, способной убить здорового человека за считанные минуты. Из них выжить удалось почти половине. После Разрушители легенд увеличили мощность излучения до 10 тысяч рад (как при атомной бомбардировке Хиросимы). На этот раз выжило всего 10 процентов тараканов. Когда мощность излучения достигла 100 тысяч рад, ни одному таракану, к сожалению, остаться в живых не удалось.

10. Тихоходки

Микроскопические беспозвоночные животные тихоходки, обитающие в воде, возможно, являются самыми выносливыми живыми существами на планете Земля. Эти, в некоторой степени, милые создания способны пережить всё: холод, жару, высокое давление и даже мощное радиационное излучение. Тихоходки способны выжить в экстремальных условиях благодаря тому, что переходят в состояние обезвоженности, которое может длиться десятилетиями! Они возвращаются к полноценному существованию сразу же после того, как оказываются в воде.

Материал подготовила Rosemarina

P.S. Меня зовут Александр. Это мой личный, независимый проект. Я очень рад, если Вам понравилась статья. Хотите помочь сайту? Просто посмотрите ниже рекламу, того что вы недавно искали.

Copyright сайт © - Данная новость принадлежит сайт, и являются интеллектуальной собственностью блога, охраняется законом об авторском праве и не может быть использована где-либо без активной ссылки на источник. Подробнее читать - "об Авторстве"

Вы это искали? Быть может это то, что Вы так давно не могли найти?


Вселенная наполнена энергией, но для живых организмов подходят лишь немногие ее виды. Основной источник энергии для подавляющего большинства биологических процессов на нашей планете - солнечный свет. Мощность излучения Солнца в среднем оценивается как 4 × 10 33 эрг/с, что обходится нашему светилу в ежегодные потери 10 -15 -10 -14 массы. Есть и гораздо более мощные излучатели. Например, 1-2 раза в столетие в нашей галактике происходят вспышки сверхновых звезд, каждая из которых сопровождается сильнейшим взрывом мощностью более 10 41 эрг/с. А квазары (ядра галактик, удаленных от нас на сотни миллионов световых лет), излучают еще большие мощности — 10 46 -10 47 эрг/с.

Клетка — основная единица жизни, она непрерывно работает для поддержания своей структуры, а потому нуждается в постоянном притоке свободной энергии. Технологически решить такую задачу ей непросто, поскольку живая клетка должна выделять и использовать энергию при постоянной (и притом довольно низкой) температуре в разбавленной водной среде. В ходе эволюции, за сотни миллионов лет, сформировались изящные и совершенные молекулярные механизмы, способные действовать необыкновенно эффективно в очень мягких условиях. В итоге к.п.д. клеточной энергетики оказывается намного выше, чем у любых инженерных устройств, изобретенных человеком.

Клеточные трансформаторы энергии представляют собой комплексы специальных белков, встроенных в биологические мембраны. Независимо от того, поступает в клетку извне свободная энергия непосредственно с квантами света (в процессе фотосинтеза) или в результате окисления пищевых продуктов кислородом воздуха (в процессе дыхания), она запускает движение электронов. В итоге производятся молекулы аденозинтрифосфата (АТФ) и увеличивается разность электрохимических потенциалов на биологических мембранах. АТФ и мембранный потенциал — два относительно стационарных источника энергии для всех видов внутриклеточной работы.

Движение вещества через клетки и организмы легко воспринимается нашим сознанием как потребность в пище, воде, воздухе и удалении отходов. Движение же энергии практически неощутимо. На клеточном уровне оба этих потока согласованно взаимодействуют в той чрезвычайно сложной сети химических реакций, которая составляет клеточный обмен веществ. Процессы жизнедеятельности на любом уровне, от биосферы до отдельной клетки, в сущности, выполняют одну и ту же задачу: превращают питательные вещества, энергию и информацию в увеличивающуюся массу клеток, отходы жизнедеятельности и тепло.

Способность захватывать энергию и приспосабливать ее для совершения разных видов работы, по-видимому, и есть та самая жизненная сила, которая с незапамятных времен волнует философов. В середине XIX в. физика сформулировала закон сохранения энергии, согласно которому в изолированной системе энергия сохраняется; в результате тех или иных процессов она может преобразовываться в иные формы, но ее количество всегда будет постоянным. Однако живые организмы представляют собой незамкнутые системы. Каждая живая клетка хорошо об этом «знает» уже сотни миллионов лет и непрерывно пополняет свои энергетические запасы.

За год растения суши и океана манипулируют колоссальными количествами вещества и энергии: они усваивают 1,5 × 10 11 т углекислого газа, разлагают 1,2 × 10 11 т воды, выделяют 2 × 10 11 т свободного кислорода и запасают 6 × 10 20 калорий энергии Солнца в виде химической энергии продуктов фотосинтеза. Многие организмы, такие как животные, грибы и большинство бактерий, не способны к фотосинтезу: их жизнедеятельность целиком и полностью зависит от органического вещества и кислорода, которые продуцируются растениями. А потому можно смело утверждать, что в целом биосфера существует за счет солнечной энергии, и античные мудрецы нисколько не ошибались, провозглашая, что солнце — основа жизни.

Исключение из гелиоцентрического взгляда на глобальный поток энергии представляют некоторые виды бактерий, которые живут за счет неорганических процессов, таких как восстановление двуокиси углерода до метана или окисления сульфида водорода. Некоторые из этих «хемолитотрофных» существ хорошо исследованы (например, метаногенные бактерии, живущие в желудке коров), но огромное их количество неизвестно даже специалистам-микробиологам. Большинство хемолитотрофов облюбовали на редкость неуютные среды обитания, которые очень трудно исследовать — лишенные кислорода, слишком кислые или слишком горячие. Многие из таких организмов не удается вырастить в чистой культуре. До недавнего времени хемолитотрофов было принято расценивать как некую экзотику, интересную с биохимической точки зрения, но мало значимую для энергетического бюджета планеты. В перспективе такая позиция может оказаться ошибочной по двум причинам. Во-первых, бактерии все чаще обнаруживаются в местах, прежде считавшихся стерильными: в исключительно глубоких и раскаленных скальных породах земной коры. В наше время выявлено такое количество мест обитания организмов, способных извлекать энергию из геохимических процессов, что их население, может статься, составляет существенную долю общей биомассы планеты. Во-вторых, есть основания полагать, что самые первые живые существа зависели от неорганических источников энергии. Если эти предположения оправдаются, наши взгляды как на глобальный поток энергии, так и на его связь с происхождением жизни могут существенно измениться.

Корлисс предположил, что гидротермальные источники могли создавать коктейли химических веществ. Каждый источник, говорил он, был своего рода распылителем первичного бульона.

По мере того, как горячая вода текла через скалы, тепло и давление приводили к тому, что простые органические соединения сливались в более сложные, такие как аминокислоты, нуклеотиды и сахара. Ближе к границе с океаном, где вода была не такой горячей, они начинали связываться в цепочки - формировать углеводы, белки и нуклеотиды вроде ДНК. Затем, когда вода подходила к океану и остывала еще больше, эти молекулы собирались в простые клетки.

Это было интересно, теория привлекла внимание людей. Но Стэнли Миллер, эксперимент которого мы обсуждали в первой части, не поверил. В 1988 году он писал, что глубоководные жерла были слишком горячими.

Хотя сильное тепло может привести к образованию химических веществ вроде аминокислот, эксперименты Миллера показали, что оно также может и уничтожить их. Основные соединения вроде сахаров «смогли бы выжить пару секунд, не больше». Более того, эти простые молекулы вряд ли связались бы в цепи, поскольку окружающая вода мгновенно их разорвала бы.

На этом этапе к битве подключился геолог Майк Расселл. Он посчитал, что теория гидротермальных источников может быть вполне верной. Более того, ему показалось, что эти источники будут идеальным домом для прекурсоров организма Вахтершаузера. Это вдохновение привело его к созданию одной из самых широко признанных теорий происхождений жизни.

Геолог Майкл Расселл

В карьере Расселла было много интересных вещей - он делал аспирин, разыскивая ценные минералы - и в одном замечательном происшествии 1960-х годов координировал реагирование на возможное извержения вулкана, несмотря на отсутствие подготовки. Но его больше интересовало, как менялась поверхности Земли на протяжении эпох. Эта геологическая перспектива и позволила сформироваться его идеям о происхождении жизни.

В 1980-х годах он обнаружил ископаемые свидетельства менее бурного типа гидротермального источника, в котором температуры не превышали 150 градусов по Цельсию. Эти мягкие температуры, по его словам, могли позволить молекулам жизни жить дольше, чем полагал Миллер.

Более того, ископаемые остатки этих «прохладных» жерл содержали нечто странное: минерал пирит, состоящий из железа и серы, сформировался в трубочках диаметром 1 мм. Работая в лаборатории, Расселл обнаружил, что пирит также может формировать сферические капли. И предположил, что первые сложные органические молекулы могли образоваться внутри этих простых пиритовых структур.

Железный пирит

Примерно в это же время Вахтершаузер начал публиковать свои идеи, в основе которых был поток горячей химически обогащенной воды, протекающей через минералы. Он даже предположил, что в этом процессе участвовал пирит.

Расселл сложил два плюс два. Он предположил, что гидротермальные источники на глубине моря, достаточно холодные, чтобы позволить образоваться пиритовым структурам, приютили прекурсоры организмов Вахтершаузера. Если Расселл был прав, жизнь началась на дне моря - и сначала появился метаболизм.

Расселл собрал это все в статье, опубликованной в 1993 году, 40 лет спустя после классического эксперимента Миллера. Она не вызвала такого же ажиотажа в СМИ, но была, возможно, более важной. Расселл объединил две, казалось бы, отдельные идеи - метаболические циклы Вахтершаузера и гидротермальные источники Корлисса - в нечто по-настоящему убедительное.

Расселл даже предложил объяснение того, как первые организмы получали свою энергию. То есть он понял, как мог бы работать их метаболизм. Его идея опиралась на работу одного из забытых гениев современной науки.

Питер Митчелл, нобелевский лауреат

В 1960-х годах биохимик Питер Митчелл заболел и был вынужден уйти в отставку из Университета Эдинбурга. Вместо этого он создал частную лабораторию в отдаленном поместье в Корнуолле. Изолированный от научного общества, он финансировал свою работу за счет стада молочных коров. Многие биохимики, в том числе и Лесли Оргел, чью работу по РНК мы обсудили во второй части, считали идеи Митчелла совершенно нелепыми.

Спустя несколько десятков лет Митчелла ждала абсолютная победа: по химии 1978 года. Он не стал знаменитым, но его идеи сегодня в каждом учебнике по биологии. Свою карьеру Митчелл провел, выясняя, что организмы делают с энергией, которую получают из пищи. По сути, он задавался вопросом, как всем нам удается оставаться в живых каждую секунду.

Он знал, что все клетки хранят свою энергию в одной молекуле: аденозинтрифосфате (АТФ). К аденозину крепится цепочка из трех фосфатов. Добавление третьего фосфата требует много энергии, которая затем запирается в АТФ.

Когда клетка нуждается в энергии - например, когда сокращается мышца - она разбивает третий фосфат в АТФ. Это превращает АТФ в аденозидифосфат (АДФ) и высвобождает накопленную энергию. Митчелл хотел узнать, как клетка вообще создает АТФ. Как она накапливает достаточно энергии в АДФ, чтобы прикрепить третий фосфат?

Митчелл знал, что фермент, образующий АТФ, находится в мембране. Поэтому предположил, что клетка закачивает заряженные частицы (протоны) через мембрану, поэтому много протонов находится по одну сторону, а по другую - нет.

Затем протоны пытаются просочиться обратно через мембрану, чтобы уравновесить число протонов по каждую сторону - но единственное место, через которое они могут пройти, это фермент. Поток текущих протонов, таким образом, обеспечивал фермент энергией, необходимой для создания АТФ.

Впервые Митчелл изложил свою идею в 1961 году. Следующие 15 лет он провел, защищая ее со всех сторон, пока доказательства не стали неопровержимыми. Теперь мы знаем, что процесс Митчелла используется каждым живым существом на Земле. Прямо сейчас он протекает в ваших клетках. Как и ДНК, он лежит в основе известной нам жизни.

Расселл позаимствовал у Митчелла идею протонного градиента: наличие большого количества протонов на одной стороне мембраны и немногого - на другой. Все клетки нуждаются в протонном градиенте, чтобы хранить энергию.

Современные клетки создают градиенты, откачивая протоны через мембраны, но для этого нужен сложный молекулярный механизм, который просто не мог появиться сам по себе. Поэтому Расселл сделал еще один логический шаг: жизнь должна была сформироваться где-то с естественным протонным градиентом.

Например, где-то у гидротермальных источников. Но это должен быть особенный тип источника. Когда Земля была молодой, моря были кислыми, а в кислой воде много протонов. Чтобы создать протонный градиент, вода из источника должна быть с низким содержанием протонов: она должна быть щелочной.

Источники Корлисса не подходили. Они не только были слишком горячими, но еще и кислыми. Но в 2000 году Дебора Келли из Вашингтонского университета обнаружила первые щелочные источники.

Келли пришлось тяжело трудиться, чтобы стать ученым. Ее отец умер, когда она заканчивала среднюю школу, и она была вынуждена работать, чтобы остаться в колледже. Но справилась и выбрала предметом своего интереса подводные вулканы и обжигающие горячие гидротермальные источники. Эта пара и привела ее в центр Атлантического океана. В этом месте земная кора треснула и с морского дна поднялся хребет гор.

На этом хребте Келли обнаружила поле гидротермальных источников, которое назвала «Потерянным городом». Они не были похожи на обнаруженные Корлиссом. Вода вытекала из них при температуре 40-75 градусов по Цельсию и была слегка подщелоченной. Карбонатные минералы из этой воды слипались в крутые белые «столбы дыма», которые поднимались с морского дна подобно трубам органа. На вид они жуткие и призрачные, но это не так: в них обитает множество микроорганизмов.

Эти щелочные жерла идеально вписывались в идеи Расселла. Он твердо поверил в то, что жизнь появилась в таких «потерянных городах». Но была одна проблема. Будучи геологом, он знал не так много о биологических клетках, чтобы убедительно представить свою теорию.

Столб дыма «черной курилки»

Поэтому Расселл объединился с биологом Уильямом Мартином. В 2003 году они представили улучшенный вариант прежних идей Расселла. И это, наверное, самая лучшая теория появления жизни на данный момент.

Благодаря Келли, теперь они знали, что породы щелочных источников были пористыми: они были усеяны крошечными отверстиями, наполненными водой. Эти крошечные кармашки, предположили они, действовали в качестве «клеток». В каждом кармашке находились основные химические вещества, в том числе и пирит. В сочетании с естественным протонным градиентом от источников, они были идеальным местом для начала метаболизма.

После того, как жизнь научилась использовать энергию вод источников, говорят Расселл и Мартин, она начала создавать молекулы вроде РНК. В конце концов, она создала себе мембрану и стала настоящей клеткой, сбежав из пористой породы в открытую воду.

Такой сюжет в настоящее время рассматривается в качестве одной из ведущих гипотез о происхождении жизни.

Клетки бегут из гидротермального источника

В июле 2016 года он получил поддержку, когда Мартин опубликовал исследование, реконструирующее некоторые детали « » (LUCA). Это организм, который жил миллиарды лет назад и от которого произошла вся существующая жизнь.

Едва ли мы когда-нибудь найдем прямые окаменевшие доказательства существования этого организма, но тем не менее вполне можем делать обоснованные предположения о том, как он выглядел и чем занимался, изучая микроорганизмы наших дней. Это и проделал Мартин.

Он исследовал ДНК 1930 современных микроорганизмов и идентифицировал 355 генов, которые были почти у всех. Это убедительно говорит о передаче этих 355 генов, через поколения и поколения, от общего предка - примерно того времени, когда жил последний универсальный общий предок.

Эти 355 генов включают некоторые для использования протонного градиента, но для генерации оного - нет, как и предсказывали теории Расселла и Мартина. Более того, LUCA, похоже, был адаптирован к присутствуют химических веществ вроде метана, что наводит на мысли, что он населял вулканически активную среду - по типу жерла.

Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории. Одну можно поправить; другая может быть фатальной.

Гидротермальные источники

Первая проблема в том, что экспериментальных доказательств описанных Расселлом и Мартином процессов нет. У них есть пошаговая история, но ни один из этих шагов не наблюдался в лаборатории.

«Люди, которые верят в то, что все началось с воспроизводства, постоянно находят новые экспериментальные данные», говорит Армен Мулкиджанян. «Люди, которые стоят за метаболизм, этого не делают».

Но это может измениться, благодаря коллеге Мартина Нику Лейну из Университетского колледжа Лондона. Он построил «реактор происхождения жизни», который имитирует условия внутри щелочного источника. Он надеется увидеть метаболические циклы, а может даже и молекулы вроде РНК. Но пока еще рано.

Вторая проблема заключается в расположении источников в глубоком море. Как отмечал Миллер в 1988 году, длинноцепочечные молекулы вроде РНК и белков не могут формироваться в воде без вспомогательных ферментов.

Для многих ученых это фатальный аргумент. «Если вы хорошо разбираетесь в химии, вас не подкупить идеей глубоководных источников, потому что вы знаете, что химия всех этих молекул несовместима с водой», говорит Мулкиджанян.

И все же Расселл и его союзники остаются оптимистами.

И только в последнее десятилетие на первый план вышел третий подход, подкрепленный серией необычных экспериментов. Он обещает нечто, чего не удалось добиться ни «миру РНК», ни гидротермальным источникам: способ создать целую клетку с нуля. Об этом в следующей части.

Живые организмы не составляют исключения в том смысле, что обмен энергии у них подчиняется всем обычным физическим законам. Процессы роста и поддержания жизни требуют затрат энергии, которые должны быть каким-то образом возмещены. Живые организмы поглощают из окружающей среды энергию в такой форме, чтобы ее можно было использовать в конкретных условиях их существования при данных значениях температуры и давления. Затем они возвращают в среду эквивалентное количество энергии, но уже в другой, менее доступной для них форме. Полезная форма энергии, которая требуется живой клетке, называется свободной энергией; ее можно определить просто как энергию, способную совершать работу при постоянных температуре и давлении.

Рис. 1-3. Живые организмы совершают различные виды работы за счет поглощаемой ими свободной энергии окружающей среды. Они возвращают в среду эквивалентное количество энергии в виде тепла и других форм непригодной для них энергии хаотического движения. Степень такого «обесценивания» (рассеяния) энергии можно охарактеризовать энтропией.

Менее полезный вид энергии, возвращаемый клеткой в окружающую среду, выделяется главным образом в форме тепла, которое рассеивается в среде и превращается в энергию беспорядочного движения. Таким образом, мы можем сформулировать еще один принцип молекулярной логики живого:

Живые организмы создают и поддерживают сложные, упорядоченные и целенаправленные элементы своей структуры за счет свободной энергии окружающей среды; эту энергию они затем возвращают в среду в менее пригодной для них форме.

Хотя живые организмы способны преобразовывать энергию, они кардинальным образом отличаются от обычных машин, созданных человеком. Системы преобразования энергии в живых клетках целиком построены из сравнительно хрупких и неустойчивых органических молекул, не способных выдерживать высокие температуры, сильный электрический ток, действие сильных кислот и оснований. Все части живой клетки имеют примерно одну и ту же температуру, нет в клетках и сколько-нибудь значительных перепадов давления. Отсюда можно заключить, что клетки не могут использовать тепло как источник энергии, поскольку тепло может совершать работу лишь тогда, когда оно переходит от более нагретого тела к более холодному. Клетки совсем не похожи на тепловые и электрические двигатели - наиболее знакомые нам типы двигателей.

Живые клетки представляют собой химические машины, работающие при постоянной температуре.

Это еще один принцип молекулярной логики живого состояния. Клетки используют химическую энергию для выполнения химической работы в процессе их роста и биосинтеза клеточных компонентов, а также осмотической работы, необходимой для переноса питательных веществ в клетку, и механической работы сократительного и двигательного аппаратов.

Рис. 1-4. Солнечный свет служит исходным источником всех форм биологической энергии.

Для всех живых организмов вбиосфере источником энергии служит в конечном счете солнечное излучение, которое возникает в результате реакции ядерного синтеза - слияния ядер водорода с образованием ядер гелия, протекающего на Солнце при необычайно высокой температуре. Фотосинтезирующие клетки растений улавливают энергию солнечного излучения и расходуют ее на превращение углекислого газа и воды в разнообразные богатые энергией растительные продукты, например крахмал и целлюлозу. При этом они выделяют в атмосферу молекулярный кислород. Другие организмы, не способные к фотосинтезу, получают необходимую им энергию путем окисления богатых энергией растительных продуктов атмосферным кислородом. Образующийся в результате углекислый газ и другие продукты окисления возвращаются в окружающую среду и снова вовлекаются растениями в круговорот веществ. Это дает нам основание сформулировать еще два принципа молекулярной логики живого состояния.

Энергетические потребности всех живых организмов прямо или косвенно удовлетворяются за счет солнечной энергии.

Весь растительный и животный мир (вообще все живые организмы) зависят друг от друга, поскольку между ними через внешнюю среду постоянно происходит обмен энергией и материей.

Сообщение

Роль зелёных растений в обеспечении энергией живых

Организмов на нашей планете

Как известно, основным источником энергии на земле является солнце. Но люди и животные не способны напрямую использовать солнечную энергию, потому что в их организмах отсутствуют системы, с помощью которых энергия потреблялась бы в такой форме, как она есть. Поэтому солнечная энергия попадает в организм человека или животного в качестве полезной энергии только через вещества, производимые растениями.

Растения способны создавать из неорганических органические вещества, используя световую энергию. Этот процесс называется фотосинтезом (от греческих слов «фотос» -свет, «синтез» - соединение). Способность к фотосинтезу - важнейшее свойство зелёных растений. Это единственный на нашей планете процесс, связанный с превращением энергии солнечного света в энергию химических связей, заключенную в органических веществах. Поэтому фотосинтез - важнейший процесс, благодаря которому возможна жизнь на Земле.

Выдающийся русский ученый конца ХIХ – начала ХХ в. Климент Аркадьевич Тимирязев (1843-1920) роль зеленых растений на Земле назвал космической. К.А. Тимирязев писал: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического».

Кроме этого растения насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения этим способом запасенной в них химической энергии аэробными клетками.

Ежегодно зелёные растения синтезируют большое количество органического вещества, поглощают около 600 млрд т углекислоты, выделяют в атмосферу 400 млрд т свободного кислорода. Благодаря фотосинтезу ежегодно запасается огромное количество преобразованной солнечной энергии.

Накопление энергии – очень важное для живой природы явление, обусловленное фотосинтезом зеленых растений. Органические вещества – отличный энергоноситель.

Созданные с участием хлорофилла и солнечного света углеводы, а также образованные в растениях белки и жиры содержат в себе много энергии. Особенно много ее в крахмале и различных сахарах.

Многие растения, такие как сахарный тростник, сахарная свекла, лук, горох, кукуруза, виноград, финик, запасают сахара в стеблях, корнях, луковицах, плодах и семенах. Именно сахара служат главным источником энергии для всех живых существ, так как легко могут стать одним из наиболее активных соединений в любой живой клетке. Постоянно поглощая энергию в виде солнечного излучения, растения ее накапливают. Из-за огромного количества зеленых растений на Земле энергии в биосфере становится все больше. Человек широко пользуется газом, нефтью, углем, дровами – все эго органические вещества, которые выделяют при сгорании энергию, некогда занесенную в зеленых растениях.

Можно сделать вывод, что существование растений играет очень важную и необходимую роль для выживания живых существ на земле. Поступившая из космоса энергия солнечных лучей, запасенная зелеными растениями в углеводах, жирах и белках, обеспечивает жизнедеятельность всего живого мира – от бактерий до человека.